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Abstract. This paper deals with challenges in federating wireless sens-
ing fabrics. Federations of this sort are currently being developed in next
generation global end-to-end experimentation infrastructures, such as
GENI, to support rapid prototyping and hi-fidelity validation of proto-
cols and applications. On one hand, federation should support access to
diverse (and potentially provider-specific) wireless sensor resources and,
on the other, it should enable users to uniformly task these resources.
Instead of more simply basing federation upon a standard description
of resources, we propose an architecture where the ontology of resource
description can vary across providers, and a mapping of user needs to
resources is performed to achieve uniform tasking. We illustrate one real-
ization of this architecture, in terms of our refactoring the Kansei testbed
to become the KanseiGenie federated fabric manager, which has full sup-
port for programmability, sliceability and federated experimentation over
heterogeneous sensing fabrics.
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1 Introduction

Several edge networking testbeds have been realized during this decade, in part
due to the recognition within the networking community that testbeds enable
at-scale development and validation of next generation networks. The role of
edge networks —and edge networking testbeds— is likely to only increase, given
the growth of wireless networks of sensors, vehicles, mobile communicators, and
the like. In this paper, we focus our attention on an emergent architecture for
next generation Wireless Sensor Network (WSN) testbeds.
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WSN Testbeds. Many WSN testbeds are in use today, of which Kansei [5],
Motelab [6], Orbit [I0], NetEye [7], and PeopleNet [I12] are but a few. Experi-
ments are often used to understand and to deal with the complex dynamics and
uncertainties of wireless communication and sensing. T'wo recent usage trends
are worth noting: One, experiments are being repeated in multiple testbeds, to
learn about (potentially substantial) variability of performance in different back-
grounds, radio types, and size scales. And two, a number of experiments involve
long running deployments—they often yield long lived sensing services—which
in turn implies that testbeds are increasingly hosting concurrent experiments.
These trends motivate the emergent requirement that testbeds need to be fed-
erations of programmable fabrics.

By programmable WSN fabrics, we mean that individual sensor arrays offer
not just resources on which programs can be executed, they also provide net-
work abstractions for simplifying WSN application development and operation.
Examples include APIs for scheduling tasks, monitoring system health, and in-
the-field programming and upgrade of applications, network components, and
sensing components. Fabrics can also support and manage the concurrent op-
eration of multiple applications. Figure [I] compares the traditional WSN model
with the emerging fabric model of WSNs.
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Fig. 1: Traditional model and the fabric model

By federated WSN testbeds, we mean multiple WSN testbeds that are loosely
coordinated to support geographically and logically distinct resource sharing. A
federation provides users with a convenient, uniform way of discovering and
tasking desired WSN resources. Experiments can simultaneously use resources
in multiple testbeds, for applications ranging from regression testing, producer-
consumer, parallel processing, to enterprise-edge co-operation.

GENI. The Global Environment for Network Innovation project [2] concretely
illustrates an architecture where WSN fabrics are a key component. GENT is
a next-generation experimental network research infrastructure currently in its
prototyping phase. It includes support for control and programming of resources
that span facilities with next-generation fiber optics and switches, high-speed
routers, city-wide experimental urban radio networks, high-end computational
clusters, and sensor grids. It intends to support large numbers of users and
large and simultaneous experiments with extensive instrumentation designed to
make it easy to collect, analyze, and share real measurements and to test load
conditions that match those of current or projected internet usage.
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Figure [2] depicts the GENT architecture from a usage perspective. In a nut-
shell, GENI consists of three entities: Researchers, Clearinghouses and Sites (aka
resource aggregates). A Researcher (interacting typically via a specially designed
Portal) queries a Clearinghouse for the set of available resources at one or more
Sites and requests reservations for those resources that she requires. To run an
experiment, she configures the resources allocated to her slice, which is a virtual
container for the reserved resource, and controls her slice through well-defined

interfaces.

User APls User APIs

Site Authority 1 Site Authority 2

Fig. 2: Federated fabric/GENI model

Researchers and Sites in GENI establish trust relationships and authenti-
cate each other via GENI Clearinghouses. The Clearinghouse keeps track of the
authenticated users, resource aggregates, slices, and reservations. Each resource
provider may be associated with its own clearinghouse but there are also central
GENI Clearinghouses for federated discovery and management of all resources
owned by participating organizations. GENI also relies on all entities to describe
their underlying resource. Resource descriptions serve as the glue for the three
entities because all interactions involve some description of resource, be it a
physical resource, such as a router and a cluster, or a logical resource, such as
CPU time or wireless frequency.

Overview of the paper. A federation of WSN fabric testbeds needs to address
two core issues: One, an efficient and flexible method for resource description,
discovery and reservation. And two, a convenient, uniform way of tasking and
utilizing federation resources. While standardizing resource descriptions would
simplify addressing these two issues, we find that the diversity of sensor char-
acteristics and the lack of a compelling standard model for describing wireless
networks complicate the federation of WSN fabrics.

In this paper, we propose a software architecture that we call KanseiGenie
for federating WSN fabrics that is compatible with GENI. KanseiGenie is based
on the position that, on one hand, different WSN fabric aggregates can advertise
resources based on different resource ontologies. On the other hand, users can
obtain uniform experimentation support from a portal supporting a given feder-
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ation. Central to the KanseiGenie architecture is a mapping between a uniform
experiment specification and a non-uniform resource specification, which is han-
dled by the portal and/or clearinghouse. Also, in keeping with the fabric model,
KanseiGenie offers network abstractions that simplify the programming task of
users by letting low-level fabric-specific implementation details to be handled by
user services, which are realized by the Sites and/or the Portal.

The rest of the paper is organized as follows: In Section [2] we detail the re-
quirements of each actor in a WSN federation. In Section 3] we discuss Resource
Specifications, their role in federation, and the need for and challenges in using
multiple resource ontologies in federation and our solution to the challenges. We
also outline the need for an Experiment Specification language in federations.
Then, we present the KanseiGenie architecture and its implementation in Sec-
tion @l We discuss various issues related to the KanseiGenie architecture and
alternative designs in Section [5] and make concluding remarks in Section [6}

2 Requirements of Federated WSN Fabrics

As explained in Section [1} the federated WSN fabric model distinguishes three
actors: the Site that owns and maintains WSN aggregate resources, the Re-
searcher who deploys/tests applications via a Portal and who need not be a
WSN expert, and the Clearinghouse (CH) that enables discovery and manages
resource inventory and allocation. In this section, we analyze the requirements of
each of these actors. Broadly speaking, these requirements aim to make user ex-
perimentation easy, repeatable, verifiable and secure, while maximizing resource
utilization.

2.1 Clearinghouse Requirements

A Clearinghouse has two broad functions: One, identification and authentication
of various actors in the system (details of this function are beyond the scope
of this paper and will not be discussed here). And two, resource management
including resource representation, resource discovery and allocation.

Resource Representation. A basic issue for federated WSN fabrics is how to
represent a resource in a fashion that will allow multiple Sites with different types
of fabrics to publish resources to the same CH, while allowing Sites, Portals, and
CHs to evolve over time. The choice of this representation potentially affects
all actors: Sites need to advertise the resource, Portals needs to request the
resources, and CHs need to match Portal requests to resources available at Sites.
Also, CHs may need to communicate with each other for federated resource
discovery and allocation. All of the above call for a language that can be used
to precisely specify information about the resource.

Note that the need for a resource description language does not mean that the
same type of device/network must be defined by all fabrics in a globally unique
way. Given the vast heterogeneity of sensor devices, aggregate architectures,
fabric service abstractions/semantics, and administrative domains, each fabric
may define its resources in a locally unique way. By way of illustration, even
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the use of IP addressing for WSN devices remains a controversial issue: some
fabrics may use this choice while other may not. Likewise, each fabric may choose
to associate only locally unique identifiers with devices in its namespace while
others might insist on globally unique identifiers.

As is common practice, we refer to a WSN device/network description as a
Resource Specification or RSpec. RSpecs tend to be declarative rather than de-
scriptive. In other words, they concisely define what the resource is and eschew
details about how the resource is used (that is described in Experiment Specifica-
tions, which we discuss later). RSpecs need not necessarily be human-readable
because most Researchers are expected to interact with Portals in convenient
ways, e.g. with graphical interfaces or library support to help and automate the
composition of resource requests.

Asian Sensornet || USSensornet | European Sensomet
Clearinghouse Clearinghouse Clearinghouse

Academic
Clearinghouse
KanseiGenie | |Non-KanseiGenie
Clearinghouse | peer-to-peer | Clearinghouse

Fig. 3: Clearinghouse to Clearinghouse interaction architecture
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Resource Discovery. Sites advertise their resources to well-known CHs, so
that researchers can discover their resources. CHs of different levels may dis-
cover resources directly from the fabric provider through their advertisements
or indirectly through other CHs. We envisage a hybrid CH architecture where
hierarchical as well as peer-to-peer communication is possible (Figure |3| shows
the communications in such a (hypothical) federation). Push and pull models of
resource discovery are readily conceived: In the push model, a CH periodically
announces to its peers or upper-level CHs the available resources at its associ-
ated fabrics that can be shared. In the pull model, a CH requests from its peers
or upper-level CHs their latest resource availability. The pull model is likely to
be used in an on-demand manner when a CH cannot find enough resources to
satisfy a user request.

Resource Allocation. In a federated experiment, a researcher might want
to request, via one or more CHs, resources from multiple sites into a slice. It
is possible that not all requested resources are available at the same CH, so
Portals may have to coordinate request. Broadly speaking, there are two ap-
proaches for federated resource allocation depending on whether the CH or the
Portal will own the responsibility of getting all of the requested resources: In
one, the Portal will directly request the resource from multiple CHs; this ap-
proach lacks scalability. In the other, the Portal communicates with a single
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CH which in turn communicates with other CHs to get the requested resources.
The second approach requires CH-to-CH resource delegation, as shown in Figure
KanseiGenie currently implements the first approach, although we envision
supporting both approaches in future.

2.2 Site Requirements

Sliceability. In the GENI model of experimentation, each Researcher owns a
virtual container, aka a Slice, to which it can deploy/execute experiments and
add/remove resources. This view fundamentally decouples the physical location
of the resource from its reuse. It follows that all resources leased to a Researcher
should be able to communicate with each other and only with each other. Slice-
ability is also fundamental for federated experimentation. In federated experi-
mentation, a Researcher selects resources from multiple sites and adds them to
a federated slice and runs experiments on this federated slice.

Sliceability may be fine-grained. To share memory, processing, or links be-
tween slices in a transparent manner, it is necessary to achieve node/network
virtualization of resources, which we will describe next. We note that fabric
model suits virtualization since it allows users to interact with resources only
through well-defines APIs.

Virtualization. The requirement that Sites allow WSN resources to be sliced
finely enables multiple slices to co-exist. The challenge in virtualization is to
provide as much control to the users (as low in the network stack as is possible)
while retaining the ability to share and safely recover the resource.
Virtualization in WSN fabrics is nontrivial. Not only do Sites have to virtual-
ize the hardware, but also the network. Recall that WSN fabrics may span mul-
tiple arrays of sensors, and multiple researchers may run their experiments con-
currently on subsets of one or more arrays. Usually sensors are densely deployed
over space, if only to let sensors share the same geographical space and be subject
to similar, if not statistically identical, physical phenomena/environments. Wire-
less interference between slices is thus an inherent problem due to the broadcast
nature of the wireless communications. Virtualization has to thus isolate the
communications of an experiment running on a slice, to enable repeatable per-
formance. For instance, channel properties such as signal to noise ratios among
wireless nodes may need to be (statistically) similar across repeated experiments.

Programmability. WSN fabrics are expected to provide the hardware and
software infrastructure for an end-to-end reprogramming service, which reliably
deploys the sensing applications composed by Researchers on the corresponding
slice. Sites should also provide monitoring and logging services. In particular,
they should also provide feedback to the Researcher about the environment
and any failures that occur during programming or execution of an experiment.
When Sites are situated in environments that are not representative of sensing
phenomena, it is desirable that they provide services for external sensor data
injection. Finally, sites and/or Portals should support workflow services, that
will allow staging and complex experimentation.
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2.3 Portal Requirements

Resource Utilization. To simplify the Researchers task in using federated
resources, a Portal needs to provide a uniform resource utilization or experimen-
tation framework. This is challenging since the federation may consist of fabrics
with a great variety of available platforms, sensors, radios, operating systems and
libraries. For instance, while for some platforms such as XSM [I8] and TelosB
[1I7] the default is to program on bare metal, others such as iMote2 [3], Sunspots
[16] and Stargates [I5] host their own operating system. And the execution envi-
ronments in these platforms vary from a simple file download and programming
the flash, to command line interfaces and virtual machines.

All of above call for an Experiment Specification language that enables Re-
searchers to configure slices in a generic manner. Intuitively, an Experiment
Specification should include the resource description that the experiment is to
be run on. It also includes a selection of user services that is relevant to the
experiment. In addition to these declarative elements, the experiment specifica-
tion language includes procedural descriptions (or workflow elements). Unlike
Resource Specifications where readability is not important, Experiment Speci-
fications should provide good readability because a Researcher might want to
script their experiments to iterate through a bunch of test parameters. Also, the
Researcher would like to reuse the same experiment specification on different
slices which makes the experiments repeatable.

Resource Translation. It is often more convenient for a Researcher to request
a networked resource in an abstract manner. For instance, requesting a 5-by-5
connected grid or a linear array of 10 nodes with 90% link delivery radio is much
easier than identifying specific sensor devices which match the required topology.
Since the resources published at the CHs are specified concretely, a Portal needs
to translate the abstract spec to embed it into site resources, although it is
possible that this be realized at the CH as well.

In a federated setting where resources are variously represented by different
Sites, a service is required that provides a mapping between the Researchers
resource need and a resource request that can be processed by different CHs.
This service is likely to be implemented at the Portal, if not in a CH. We discuss
the motivation for this sort of mapping in more detail in the next section.

3 Specification Languages

Researchers wishing to use WSN fabrics first query the system to discover
where/which resources are available. They then select a set of resources and
obtain a lease for them. Finally they configure the resources and user services
needed to carry out their intended experiment(s). Each of these steps needs a
flexible, feature-rich and extensible language to convey the desired goals of the re-
searcher to the system. We refer to the language used to publish, query, request
and allocate resources as the resource description language, and the language
used to configure resources and script workflow as the experiment specification
language.
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3.1 Resource Ontologies for Resource Description

As mentioned in Section [2] resources from multiple Sites may well be similar to
each other and just as well be different from each other. Resource description in
terms of taxonomical flat-schema could hide minor differences by shoe-horning
similar resources into the same category. However, building an exhaustive schema
for WSNs, which will be conformed to by every Site, Clearinghouse and Portal
is both difficult and undesirable. The current GENI proposal [I] mitigates this
problem somewhat by proposing that the community agree only on the core of
resource description, it leaves the details to domain-specific extensions (to which
a number of actors would still need to agree to).

A major drawback of this approach is that it does not capture the relation-
ships or constraints between resources. For example, in a wireless network, while
a node and channel might be two separate resources, it might not be possible to
allocated just the node and not allocate any part of the channel, or vice versa.
It might be better to explicitly capture such dependencies and relationships in
the resource specification which would lead to a better allocation of resources.
Another example is that in a long running experiment you might want to add
new resources to your slice which are compatible with your current experiment
and resource specifications. Such querying will be extremely difficult to per-
form if constraints on resources (like software supported) and experiments (like
libraries/services used) can be specified .

One approach that redresses this drawback is to represent resources in terms
of ontologies, using a resource description language such as OWL/RDF [I1] or
NDL [§]. Note that with this approach in order for two entities to communicate
they only need to agree on the language in which resources are specified and not
on the ontology.

Using Multiple Resource Ontologies for WSN Resources. We offer two
example arguments (node addressing and network links) for using multiple on-
tologies in WSN resource description. The first deals with the lack of agreement
in specifying, or addressing, sensor nodes. Unlike the core internet, WSNs have
not adopted IP as their standard for addressing. Now, there is controversy on
this point: 6lowpan [4] uses an IP stack and others [20] have proposed solutions
to bridge WSNs to the enterprise IP network either by delegating the address
mapping to the gateway. Nevertheless, one cannot assume that such universal
addressing scheme can be realized in every WSN fabric; some sensor devices
simply do not have enough ROM and RAM to hold the IP stack, even if we
can tolerate the communication and computation overhead in these proposed
schemes [25].

Along these lines, while a Researcher might have some notion of a “sensor
mote” and a “gateway device”, both of these classes could be represented by some
Site using a common name such as “node” with different attributes. Conversely,
a “sensor mote could be represented by another Site as the composition of a
“sensor and a “mote. Multiple ontologies would support these different world
views.
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Our second argument deals with the difficulty of specifying wireless network
topologies. The traditional model of graphs (with nodes and links) is insufficient
given the time-and-space variant background noise and interference. A plethora
of models, namely the Unit Disk Graph, Dual Disk Graphs, Physical Model of
Links, Topology (Ball) Model exist for defining the notion of links, and the choice
of which one to offer is subjective.

As a concrete example, consider a Researcher request for a 5-by-5 fully con-
nected sensor network. Figure [d] gives two possible ways of specifying this request
for different WSNs. In a geometric model, network connectivity would defined by
specifying the transmission power and antenna direction for each node. However,
since some sensing devices do not support the control of transmission power and
as a result, link sets could be alternatively specified for instance using received
signal strength indicator induced by each node at its neighboring receivers.

<node id=1, power=10mw, direction=270>

(a) Geometric model

<node>
<linkSet>
<neighbor nodeID=2, rssi=0dbm/>
</linkSet>
</node>
(b) Link set model

Fig. 4: Two ways of specifying links in sensor networks

Implication of Using Multiple Ontologies. Given the intense debate in
the WSN community, forcing Sites to use a single ontology is likely to throttle
innovation and will result in a needlessly bulky ontology, which is not easily
extensible. Since most Researchers are expected to only interact through a Portal
(or two) of their choice, we envision that Portals will serve as the unifying agent
for resource specifications. Since all Sites will use the same language for their
descriptions, the Portal can combine the different ontologies used by the Site to
provide a single ontology to the researchers and perform the necessary translation
of Researcher requests. We note that there are several extant techniques and tools
to map and align ontologies [13] 23].

3.2 Experiment Specification and Work Flow Control

WSN applications typically run in multiple well defined phases, with each phase
involving a possibly different configuration. Another use case for Experiment
Specifications is iterative experimentation, where a researcher programs repeated
experiments, where the configuration of each depending on the outcome of the
previous ones. Moreover, it is also not uncommon for Researchers to selectively
specify which libraries/protocols (and sometimes even implementation versions)
to use with a particular platform.

Experiment Specifications thus provide Researchers with a flexible and
feature-rich way of interacting with resources, rather than just a GUI or a
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command line interface. They become particularly relevant for future scenar-
ios where applications will primarily involve machine-to-machine, as opposed to
human-to-machine, interaction. That they provide a uniform way of configuring
experiments in a heterogenous setting does however imply that each Site has to
implement the necessary logic. The idea then is to standardize the Experiment
Specification language and not the format of interaction, as has been suggested
in [24].

4 KanseiGenie

KanseiGenie is a refactoring of the Kansei testbed, to support a GENI federation
of geographically separated Sites, each hosting one or more WSN fabric arrays.
Its software architecture comprises components and aggregates. Each sensor de-
vice is represented as a component that defines a uniform set of interfaces for
managing that sensor device. An aggregate contains a set of components of the
same type and provides control over the set. (In WSN experiments, Researchers
normally interact with a fabric arrays through the aggregate interface rather
than individual component interfaces.)

An aggregate also provides other internal APIs needed for inter-component
interactions, as called for in the fabric model.

4.1 Architecture and Implementation

In keeping with the GENI architecture, KanseiGenie consists of actors for a Site,
a Clearinghouse, and a Portal. The current implementation of federation consists
of a Site at The Ohio State University, which has four different sensor fabric
arrays, and a Site at Wayne State University, which has two different sensor
fabric arrays. The Sites and the Research Portal (which is hosted at Ohio State)
run the KanseiGenie software developed at Ohio State. One of the Clearinghouse
functions, namely resource management, is implemented using ORCA [9].

KanseiGenie Site. A KanseiGenie Site has four components: Aggregate of Ag-
gregate Manager (AAM), the Web Service Layer (WSL), the individual Compo-
nent Managers (CM) for each device type, and the Orca Site Authority module.

Aggregate of Aggregate Manager. Given that each fabric array is an
aggregate, the KanseiGenie Site Authority (SA) is conceptually an Aggregate of
Aggregate Managers that provides access to all the arrays. AAM is responsible
for implementing the fabric APIs. AAM provides an AM interface for each sensor
array through parameterization. Externally, AAM (i) administers usage of the
resource provided by the Site according to local resource management policies,
(ii) provides the interface through which the SA advertises its shared resource
to one or more authenticated CHs and, (iii) provides a programming interface
through which Researcher (via the Portal) can schedule, configure, deploy, mon-
itor and analyze their experiments. Internally, the AAM provides mechanisms
for inter-aggregate communications and coordination.
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Fig. 5: KanseiGenie Architecture

The fabric APIs provided by an AM are organized into the four functional
planes:

— Resource/Slice services: help researchers discover, reserve, and configure re-
sources for experiments.

— Experiment services: provide basic data communication and control between
experiments.

— Operation and management services: enable administrators to manage the
resources.

— Instrumentation and measurement services: enable the fabric to make mea-
surements of physical phenomena, store the measurements and make them
securely available.

Web Service Layer. WSL provides a wrapper for AAM and acts as a
single-point external interface for the KanseiGenie SA. The WSL layer provides a
programmatic, standards-based interface to the AAM. We utilize the Enterprise
Java Bean framework to wrap the four functional GENI planes. Each of the
manager interfaces are implemented as a SessionBean. We utilize the JBoss
application server as the container for the EJBs partly because JBoss provides
mechanisms for users to conveniently expose the interface of Session Beans as
web services. Other reasons for choosing JBoss include its community support,
wide adoption, open-source licence, and stability.

Component Manager. Each sensor device in KanseiGenie has its own
Manager (although for some primitive devices such as motes the Manager is
itself implemented on other more capable devices). The Component Manager
implements the same APIs as that of AAM and is responsible for executing the
APIs on the individual devices. The logical collection of all the Managers of
devices belonging to the same device array form the Aggregate Manager of that



12 M. Sridharan, W. Zeng, et al.

device. Currently KanseiGenie supports Linux-based PCs/Laptops (Redhat and
Ubuntu), Stargates [I5], TelosB [I7], and XSMs [I§]. CMs for Imote2 [3] and
SunSpots are under development. All of the CMs are implemented using Perl. A
number of tools for user programming of and interaction with motes are written
in the Python and C programming languages.

KanseiGenie Portal. The Portal contains a suite of tools for the life cycle of an
experiment, ranging from resource reservation to experiment cleanup. It provides
an easy interface for experiment specification; at present, this is a user-friendly
GUI; a user programmable interface under planning.

The Portal is implemented using the PHP programming language. It also
automates tasks for resource specification creation, requesting, and subsequent
experiment download. For a federated setting, it serves as an unifying point by
mapping dissimilar resource ontologies and by automatically stitching the slices
from multiple sites into a single federated slice. Specifically, it uses the Orca
Slice Manager, explained below, to reserve resources requested by the Researcher.
Once the reservation is done, it interacts with the AAM web interface to configure
and run experiments. Of course, a Researcher could directly program against the
AAM web interfaces to gain more fine-grained control of experiments, i.e., write
his own portal as need be.

KanseiGenie Clearinghouse CH has two main functions:

1. Resource Management: Each Site choose a CH to which it delegates its
resources, the CH manages its resources on behalf of the Site and leases
these resources to the Researchers. To this end, CH maintains a repository
of resources available at each Site and the state of the resources and leases.
Even though CH creates the leases, it is up to the Site to honor these leases.
Researchers also use CH as central point to discover resources available at
the site. In KanseiGenie, this task is delegated to a sub-entity called the
Resource Broker implemented by ORCA.

2. Identity, Authentication and Trust: CH is also responsible for the overall
security of the system. It authenticates Users, Sites and Portals. A new Site,
Portal or Researcher should first contact the CH and get credentials, using
which it can communicate with the other system entities. In case of a federa-
tion, the CH could implement trust-chaining to authenticate Researchers and
Brokers from other domains. KanseiGenie, consistent with the GENI/ORCA
effort, plans to use Shibboleth [I4] as the Identity and Authentication man-
agement software.

ORCA-based Resource Management System. ORCA consists of 3 enti-
ties, each one is correspondingly embedded into the three KanseiGenie actors
(Portal, Site and Clearinghouse) rExperiment Specificationtively. Collectively,
they implement the resource management function.

— ORCA Slice Manager. The Slice Manager interacts with the Researcher and
gets the resource request, forwards it to the Broker and gets the lease for the
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resources. Once a lease is received, the Slice Manager, forwards it to the Site
Authority to redeem the lease.

— ORCA Site Authority. The Site Authority keeps inventory of all the resources
that need to be managed. It delegates these resources to one or more Brokers,
which in turn lease the resources to Researchers through the Slice Manager.

— ORCA Broker: The Broker keeps track of the resources delegated by various
Site Authorities. It receives the resource request from the Slice Manager and
if the resource is free, it leases the resource to the Slice Manager. A number
of different allocation policies are implemented using a policy plug-in.

To integrate ORCA for resource management, we modified the ORCA Slice
Manager to include an XML-RPC server that receives the resource requests from
the Portal. Similarly the ORCA SA was suitably modified to make web service
calls to the KanseiGenie AAM for experiment setup and tear down. Figure
shows this integration architecture.

4.2 Portal-based Federation in KanseiGenie.

Apart from being the single point of access for a Researcher, the Portal plays
an important role in KanseiGenie federation architecture. The Portal has three
important functions in federation, namely Resource Specification Mapping, Ex-
periment Specification Mapping, and Federated Slice Stitching.

Portal GUI (Portal Ontology)
KanseiGenie | ressarchorinput

Portal | Rrspec Abstract Request
(Portal Ontology)

l Portal Translation

Rspec Abstract Request
(Site Ontology)

l Portal Embedding

Rspec Concrete Request

(Site Ontology)
| Request sent to broker
R Lease sent to Portal
Rspec Concrete Request Site
Orca (Site Ontology) Resource Lease
B ro ker l Request granted by brokar Ticket honored and lease
And i
Resource Ticket Ticket sent to Portal Resource Ticket
(Site Ontology) And forwarded o Site” | (Site Ontology)

Fig. 6: Resource Specification mapping, translation and lease generation

Resource Specification Mapping. As explained in Section |[3| our position
is that Sites may use their own Resource Specification dialects (ontologies). To
provide a unified experience to the Researchers, we put the onus of interpreting
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multiple ontologies on the Portal. The Portal discovers resources from multiple
sites, understands the Resource Specification ontologies and remaps the different
ontologies into a unified ontology at the Portal. The Current research [23 2]
suggest that this remapping of ontologies can be done automatically with very
high probabilities for related ontologies. However, we do the mapping manually
since it is a one-time operation per Site. In the current implementation, the Por-
tal is also responsible for doing the embedding an abstract Resource Specification
into a concrete Resource Specification which we call Resource Specification Em-
bedding), although it is possible that this feature could be moved to the Orca
Broker in future. The Resource Specification generation, translation, embedding,
ticketing and lease generation process is shown in Figure [0}

Experiment Specification Mapping. So that the Researcher can config-
ure experiments in a uniform way, using Experiment Specifications, the Portal
maps the experiment configuration onto Site specific experiment manager APIs.
Thus, a Researcher may “stitch fabricy slice and fabricy slice”, “inject data
on fabricy slice from file,”, etc., without worrying about the details of fabric,
slice and fabricy slice; he may likewise repeat the same experiment on different
fabric slices easily. In KanseiGenie, we attempt to use the same APIs for different
aggregates whenever possible; nevertheless, when the notion of a service (say for
logging) on a Virtual Machine fabric is different from that of a Mote fabric, the
complexity of mapping the configuration onto the corresponding APIs is handled
by the Portal.

Federated Slice Stitching. When conducting a federated experiment, a Re-
searcher requests a federated slice. She expects seamless communication between
the resources in the federated slice, which means that the slices from different
Sites needs to be stitched together. We again put the onus of stitching the slices
on the Portal. Even though the individual Sites need to provide the services that
will allow for the stitching, the Portal possess the knowledge for implementing
stitching (such as VLAN numbers, IP addresses, ports, web URLs, etc.). Note
that multiple types of stitching might be needed (and possible) depending on the
sensing fabrics involved and their capabilities, e.g., it is easy to stitch a federated
slice consisting exclusively of virtual machines connected by wired virtual LANs,
while it is much harder to stitch two wireless network slices to create a single
federated network slices.

5 Discussion

Here, we discuss some of our design decisions taken in realizing KanseiGenie.

What to Federate at Portals? KanseiGenie has thus far chosen the Portal as
the main federating agent in the system, including roles for unifying ontologies,
embedding Resource Specifications, providing a uniform Experiment Specifica-
tion, and federated slice stitching. This design suits the view that a Portal real-
izes application domain specific support, and that for different domains, different
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Portals may suit. In other words, we view the KanseiGenie Portal as suitable
for WSN experiments (and perhaps only some classes of WSN experiments) as
opposed to sufficing for all GENI-Researcher needs.

In this view, Clearinghouses are treated as being generic rather than domain
specific. Roles which are less domain specific, e.g. embedding Resource Specifi-
cations or slice stitching, can be moved from Portals to CHs (or even to Sites)
assuming the method of stitching desired is communicated to them. Now, should
CHs evolve to become domain specific, they may import more roles from Por-
tals. Taken to the extreme, this would suggest that a top level CH be directly
or indirectly capable of unifying all resources in GENI.

Fabric-specific APIs? KanseiGenie leaves the choice and implementation of
Aggregate and Component APIs up to the Site. On one hand, each Site Experi-
ment Manager is expected to support standard/generic APIs, on the other, there
are cases where Sites need to provide specialized domain-specific interfaces [22]
to support certain Portals.

Why not standardize resource specifications? GENI [I] partially stan-
dardizes resource specifications and proposes the adoption of a uniform core
RSpec for all federated sites. Although this solution might suit a traditional
core network that consists of homogeneous virtual machines, it is not equally
applicable to WSN fabrics. Roscoe in [24] lays out the drawbacks of going down
the standardization path. A key challenge in using a standardized specification
is anticipating in advance all of the possible things that must be expressible.
He argues, citing the experience with the erstwhile ANSA trading model [19],
that the resource request instead should be viewed as a constraint satisfaction
problem and not a simple database query. This calls for a language in which
we can specify constraints, the community need only standardize the specifica-
tion language and not the format. Thus a decentralized resource specification
scheme better supports the inherent heterogeneity in resource and experiment
specification in future federated fabrics.

6 Conclusion

In this paper, we described the KanseiGenie software architecture for federated
WSN fabrics. We argued a case for letting WSN fabrics choose there own Re-
source Specification ontologies and showed how a WSN federation can accom-
modate heterogenous resources. Our implementation resolves the diversity in
resource specifications by letting the Portal map the Site specific description to
a local ontology with which the Researchers can interact. We also illustrated the
need for a Experiment Specification language to enable Researchers to uniformly
interact with multiple WSN fabrics in the federation; Experiment Specifications
further enable scripted experimentation and complex staging between fabrics. As
KanseiGenie grows to accommodate other sites, it remains to be seen whether a
need to develop other Portals will emerge or some of the mapping functionality
in the Portal will migrate to Clearinghouses.
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